Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 252: 126524, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633545

RESUMO

The irregular expression of bone matrix proteins occurring during the mineralization of bone regeneration results in various deformities which poses a major concern of orthopedic reconstruction. The limitations of the existing reconstruction practice paved a way for the development of a metal-organic composite [TQ-Sr-Fe] with Metal ions strontium [Sr] and iron [Fe] and a biomolecule Thymoquinone [TQ] in an attempt to enhance the bone mineralization due to their positive significance in osteoblast differentiation, proliferation and maturation. TQ-Sr-Fe was synthesized by in-situ coprecipitation and subjected to various characterization to determine their nature, compatibility and osteogenic efficiency. The crystallographic and electron microscopy analysis reveals sheet like structure of the composite. The negative cytotoxicity of TQ-Sr-Fe in the MG 63 cell line signified their biocompatibility. Cell adhesion and proliferation rate affirmed osteoconductive and osteoinductive nature of the composites and it was further supported by the gene expression of osteoblastic differentiation. The sequential expression of bone matrix proteins such as OCN, SPARC, COL 1, and Alkaline Phosphatase elevate the calcium deposition of MG-63 osteoblast like cells and initiates mineralization compared to control. Thus, the metal-organic composite TQ-Sr-Fe would make a suitable composite for accelerating mineralization process which would leads to faster bone regeneration.


Assuntos
Fosfatase Alcalina , Matriz Óssea , Fosfatase Alcalina/metabolismo , Matriz Óssea/metabolismo , Osteogênese/genética , Proteínas , Estrôncio/química , Cálcio/metabolismo
2.
Biomacromolecules ; 21(6): 2512-2524, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32343892

RESUMO

Tissue engineering is currently one the fastest growing engineering fields, requiring fabrication of advanced and multifunctional materials to be used as scaffolds or dressing for tissue regeneration. In this work, a bilayer matrix was fabricated by electrospinning of a hybrid cellulose acetate nanofibers (CA) containing bioactive latex or Ciprofloxacin over highly interconnected collagen (CSPG) 3D matrix previously obtained by a freeze-drying process. The bilayer matrix was fabricated with a nanofibrous part as the primary (top) layer and a spongy porous part as the secondary (bottom) layer by combining electrospinning and freeze-drying techniques to enhance the synergistic effect of both materials corresponding to physical and biological properties. The final material was physicochemically characterized using Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The bilayer matrix exhibited nanofibrous and 3D porous structure with properties such as high porosity, swelling, and stability required for soft-tissue-engineering applications. Furthermore, the in vitro biological and fluorescence properties of the matrix were tested against NIH 3T3 fibroblast and human keratinocyte (HaCaT) cell lines and showed good cell adhesion and proliferation over the bilayer matrix. Thus, the synergistic combination of nanofibrous material deposition onto to the collagenous porous material has proved efficient in the fabrication of a bilayer matrix for skin-tissue-engineering applications.


Assuntos
Nanofibras , Bandagens , Proliferação de Células , Celulose/análogos & derivados , Colágeno , Humanos , Engenharia Tecidual , Tecidos Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...